Streamlit Chat Message History
This notebook goes over how to store and use chat message history in a Streamlit app. StreamlitChatMessageHistory will store messages in
Streamlit session state
at the specified key=
. The default key is "langchain_messages"
.
- Note, StreamlitChatMessageHistory only works when run in a Streamlit app.
- You may also be interested in StreamlitCallbackHandler for LangChain.
- For more on Streamlit check out their getting started documentation.
You can see the full app example running here, and more examples in github.com/langchain-ai/streamlit-agent.
from langchain.memory import StreamlitChatMessageHistory
history = StreamlitChatMessageHistory(key="chat_messages")
history.add_user_message("hi!")
history.add_ai_message("whats up?")
API Reference:
history.messages
You can integrate StreamlitChatMessageHistory into ConversationBufferMemory and chains or agents as usual. The history will be persisted across re-runs of the Streamlit app within a given user session. A given StreamlitChatMessageHistory will NOT be persisted or shared across user sessions.
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
# Optionally, specify your own session_state key for storing messages
msgs = StreamlitChatMessageHistory(key="special_app_key")
memory = ConversationBufferMemory(memory_key="history", chat_memory=msgs)
if len(msgs.messages) == 0:
msgs.add_ai_message("How can I help you?")
API Reference:
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
template = """You are an AI chatbot having a conversation with a human.
{history}
Human: {human_input}
AI: """
prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
# Add the memory to an LLMChain as usual
llm_chain = LLMChain(llm=OpenAI(), prompt=prompt, memory=memory)
API Reference:
Conversational Streamlit apps will often re-draw each previous chat message on every re-run. This is easy to do by iterating through StreamlitChatMessageHistory.messages
:
import streamlit as st
for msg in msgs.messages:
st.chat_message(msg.type).write(msg.content)
if prompt := st.chat_input():
st.chat_message("human").write(prompt)
# As usual, new messages are added to StreamlitChatMessageHistory when the Chain is called.
response = llm_chain.run(prompt)
st.chat_message("ai").write(response)