LLM
An LLMChain is a simple chain that adds some functionality around language models. It is used widely throughout LangChain, including in other chains and agents.
An LLMChain consists of a PromptTemplate and a language model (either an LLM or chat model). It formats the prompt template using the input key values provided (and also memory key values, if available), passes the formatted string to LLM and returns the LLM output.
Get started
from langchain.prompts import PromptTemplate\nfrom langchain.llms import OpenAI\nfrom langchain.chains import LLMChain
prompt_template = "What is a good name for a company that makes {product}?"
llm = OpenAI(temperature=0)
llm_chain = LLMChain(
llm=llm,
prompt=PromptTemplate.from_template(prompt_template)
)
llm_chain("colorful socks")
{'product': 'colorful socks', 'text': '\n\nSocktastic!'}
Additional ways of running LLMChain
Aside from __call__ and run methods shared by all Chain object, LLMChain offers a few more ways of calling the chain logic:
applyallows you run the chain against a list of inputs:
input_list = [
{"product": "socks"},
{"product": "computer"},
{"product": "shoes"}
]
llm_chain.apply(input_list)
[{'text': '\n\nSocktastic!'},
{'text': '\n\nTechCore Solutions.'},
{'text': '\n\nFootwear Factory.'}]
generateis similar toapply, except it return anLLMResultinstead of string.LLMResultoften contains useful generation such as token usages and finish reason.
llm_chain.generate(input_list)
LLMResult(generations=[[Generation(text='\n\nSocktastic!', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nTechCore Solutions.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nFootwear Factory.', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {'prompt_tokens': 36, 'total_tokens': 55, 'completion_tokens': 19}, 'model_name': 'text-davinci-003'})
predictis similar torunmethod except that the input keys are specified as keyword arguments instead of a Python dict.
# Single input example
llm_chain.predict(product="colorful socks")
'\n\nSocktastic!'
# Multiple inputs example
template = """Tell me a {adjective} joke about {subject}."""
prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"])
llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0))
llm_chain.predict(adjective="sad", subject="ducks")
'\n\nQ: What did the duck say when his friend died?\nA: Quack, quack, goodbye.'
Parsing the outputs
By default, LLMChain does not parse the output even if the underlying prompt object has an output parser. If you would like to apply that output parser on the LLM output, use predict_and_parse instead of predict and apply_and_parse instead of apply.
With predict:
from langchain.output_parsers import CommaSeparatedListOutputParser
output_parser = CommaSeparatedListOutputParser()
template = """List all the colors in a rainbow"""
prompt = PromptTemplate(template=template, input_variables=[], output_parser=output_parser)
llm_chain = LLMChain(prompt=prompt, llm=llm)
llm_chain.predict()
'\n\nRed, orange, yellow, green, blue, indigo, violet'
With predict_and_parse:
llm_chain.predict_and_parse()
['Red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']
Initialize from string
You can also construct an LLMChain from a string template directly.
template = """Tell me a {adjective} joke about {subject}."""
llm_chain = LLMChain.from_string(llm=llm, template=template)
llm_chain.predict(adjective="sad", subject="ducks")
'\n\nQ: What did the duck say when his friend died?\nA: Quack, quack, goodbye.'